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Abstract

When the Mach number tends to zero the compressible Navier–Stokes equations converge to the incompressible
Navier–Stokes equations, under the restrictions of constant density, constant temperature and no compression from the
boundary. This is a singular limit in which the pressure of the compressible equations converges at leading order to a con-
stant thermodynamic background pressure, while a hydrodynamic pressure term appears in the incompressible equations
as a Lagrangian multiplier to establish the divergence-free condition for the velocity. In this paper we consider the more
general case in which variable density, variable temperature and heat transfer are present, while the Mach number is small.
We discuss first the limit equations for this case, when the Mach number tends to zero. The introduction of a pressure
splitting into a thermodynamic and a hydrodynamic part allows the extension of numerical methods to the zero Mach
number equations in these non-standard situations. The solution of these equations is then used as the state of expansion
extending the expansion about incompressible flow proposed by Hardin and Pope [J.C. Hardin, D.S. Pope, An acoustic/
viscous splitting technique for computational aeroacoustics, Theor. Comput. Fluid Dyn. 6 (1995) 323–340]. The resulting
linearized equations state a mathematical model for the generation and propagation of acoustic waves in this more general
low Mach number regime and may be used within a hybrid aeroacoustic approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The incompressible limit of a compressible flow is rather subtle due to the fact that the propagation rate of
the pressure waves becomes infinite and the equations change their type. Within this limit the pressure splits up
into a thermodynamic pressure term and a hydrodynamic pressure term. If the limit solution has constant
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temperature and density and if the boundary values satisfy the incompressibility constraint, then the
thermodynamic pressure becomes the background pressure being constant in space and time. The hydrody-
namic pressure appears in the incompressible equations as a sort of a Lagrangian multiplier with no connec-
tion to the equation of state. The asymptotic analysis of Klainerman and Majda in [9,10] gives insight into this
limit behavior. They gave a mathematically rigorous derivation in the isentropic case. The asymptotic analysis
was formally extended by Klein to the non-isentropic case and to multiple space scales in [11] in which he also
gave an overview about other asymptotic considerations in this low Mach number regime. A detailed discus-
sion of the incompressible limit is also given in the book of Wesseling [20].

Numerical methods for the compressible equations may have difficulties with the zero Mach number limit
because in the limit the speed of sound waves becomes infinite compared to the flow speed and thus leads to an
elliptic coupling of pressure and velocity. Hence, all explicit numerical schemes become quite inefficient in the
low Mach number regime due to their stability restriction (CFL condition). The other difficulty is that the
pressure in the compressible equations converges to the thermodynamic pressure, which becomes the constant
background pressure in the incompressible limit. This is the way how the equation of state for compressible
flow is automatically satisfied and does not appear in the incompressible equations. For the compressible
equations Bijl and Wesseling [2] introduced a splitting of the pressure into a thermodynamic and a hydrody-
namic pressure term. Then they proposed an implicit numerical method that remains stable without reference
to the sound velocity and which approximates the incompressible equations for Mach number zero. The con-
stant thermodynamic pressure satisfies the equation of state and the hydrodynamic pressure serves as a
Lagrangian multiplier to get the divergence-free property of the velocity. A formulation in conservative vari-
ables was later given in [18,20]. Similar to this approach Klein and Munz [12] and Munz et al. [13] proposed
the multiple pressure variable (MPV) method based on the asymptotic results of Klein [11].

In [8] Hardin and Pope proposed a hydrodynamic/acoustic splitting for computational aeroacoustics which
is called expansion about incompressible flow with short-hand notation EIF. Perturbation equations for the
acoustics are derived by splitting up the compressible solution in an incompressible part and acoustic
fluctuations:
q ¼ q0 þ q1 þ q0; ð1Þ
u ¼ uinc þ u0; ð2Þ
p ¼ pinc þ p0: ð3Þ
The primitive variables in the compressible equations are split into the incompressible solution identified by
the index ‘inc’ and into the primed acoustic variables. The term q1 denotes the density change due to the
hydrodynamic pressure. In [8] the term q0 þ q1 is called the corrected incompressible density. These relations
are substituted into the compressible equations to get evolution equations for the acoustic variables. The
source term is determined by the incompressible solution.

The idea of this perturbation method is to solve the flow field based on the incompressible Navier–Stokes
equations and to get the noise generation and propagation in a second step via the perturbation equations.
This method is attractive, if the influence of the acoustic waves to the movement of the flow can be neglected,
because the solution of the incompressible Navier–Stokes equations needs less computational effort than solv-
ing their compressible counterpart. Another reason is that the acoustics waves at low Mach number have small
amplitudes and large wave length compared to small structures and strong gradients in the fluid flow. The
inherent numerical dissipation of a flow solver which is necessary to resolve the local gradients within the flow
could destroy these waves in a short time and make a simulation up to the near far field impossible. Several
subsequent contributions extended and improved this approach, see e.g., Shen and Sorensen [16], Slimon et al.
[17], Bailly et al. [1], Ewert and Schröder [7] and recently Seo and Moon [15].

In this paper we extend the EIF approach for low Mach number flow with variable density, temperature
gradients and heat conduction or with compression from the boundary. This extension is based on two build-
ing blocks. The incompressible solution as the state of the expansion is replaced by the solution at zero Mach
number which takes into account the additional physical effects as variable density, temperature gradients, and
outer compression. The flow equations in this flow regime are obtained by using the low Mach number asymp-
totic results as given in [9,11]. Also motivated by the asymptotic analysis the perturbation ansatz (1)–(3) is
scaled with powers of the Mach number. This scaling leads to linearized acoustic equations in a
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straightforward way by neglecting terms of higher orders in the Mach number and also identifies the main
parts of the source terms.

The outline of the paper is as follows. In Section 2 we first introduce the dimensionless compressible
Navier–Stokes equations and survey the properties of the equations in the Mach number zero limit. The
acoustic perturbation equations are then derived in Section 3. Various numerical results for an example at very
low Mach number with compression from the boundary are presented in Section 4. In Section 5 we give some
conclusions.

2. Governing equations

The conservation equations for mass, momentum, and total energy with viscous effects, gravitational force,
and heat conduction in the conservative form are given as
o.
ot
þr � ð.uÞ ¼ 0; ð4Þ

oð.uÞ
ot
þr � ð.uÞ � u½ � þ 1

M2
rp ¼ 1

Re
r �Te �

q

Fr2
ez; ð5Þ

o

ot
p þ ðc� 1ÞM2 .u2

2
þ ðc� 1ÞM

2

Fr2
.z

� �
þr � cp þ ðc� 1ÞM2 .u2

2
þ ðc� 1ÞM

2

Fr2
.z

� �
u

� �

¼ c
Pr � Re

r � ðkrT Þ þ ðc� 1ÞM
2

Re
r � ðTeuÞ; ð6Þ
where . denotes the density, p the pressure, u the velocity, T the temperature, g the viscosity and k is the ther-
mal conductivity.

Here, the equation of state for a perfect gas was used, relating the pressure to the density and the internal
energy
p ¼ ðc� 1Þ.e ¼ .T : ð7Þ

The viscous stress tensor Te for a Newtonian fluid is
Te ¼ 2gD� 2

3
gðr � uÞI with D ¼ 1

2
ruþ ðruÞT
h i

ð8Þ
and with the identity matrix I. The total energy e per unit volume consists of the internal, the kinetic and the
potential part as
e ¼ .eþM2

2
.u2 þM2

Fr2
.z ¼ ei þM2ek þ

M2

Fr2
ep: ð9Þ
In this dimensionless formulation we have chosen different reference values for the velocities: uref for the flow
velocity u and cref for the sound velocity c. This is favorable in the low Mach number regime where these scales
separate. The reference cref for the speed of sound is determined as cref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pref=qref

p
from the references for

pressure and density, for simplicity we omit c. The references pref and qref are typically the background values,
uref might be an average velocity or the free stream velocity. In the flow regime, considered in this paper, the
values uref and cref differ by orders of magnitudes which means that the global Mach number M ¼ uref

cref
is small.

The other dimensionless characteristic numbers, Reynolds number Re, Prandtl number Pr and Froude num-
ber Fr, are defined as usual
Re ¼ ureflref

mref

; Pr ¼ mref

jref

and Fr2 ¼ u2
ref

glref

; ð10Þ
where lref, mref, jref and g denote the references of length, of kinematic viscosity, of thermal diffusion, and the
constant of gravity, respectively.

It was rigorously proven by Klainerman and Majda [10] for isentropic flow and under some assumptions
with respect to the initial data that for M! 0 the compressible equations converge towards their incompress-
ible counterparts. This is a singular limit, since the mathematical equations change their type: while in the
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inviscid case the compressible equations are hyperbolic or hyperbolic–parabolic in the viscous case, the incom-
pressible equations are hyperbolic–elliptic or parabolic–elliptic. This is due to the fact that the velocity of the
pressure waves
juj þ c
M

ð11Þ
for the system (4)–(6) becomes infinite. This coincides well with the physics: due to the fast pressure waves a
fast pressure equalization takes place and the pressure becomes nearly constant. Thus, the flow itself can not
longer generate density variations, and the flow becomes incompressible.

The incompressible limit equations as the incompressible Navier–Stokes equations are usually used as the
mathematical model for fluid flow where the reference of sound velocity is some orders of magnitude larger than
the reference of the flow velocity and the flow has nearly constant density and temperature. Klainerman and
Majda [10] used an asymptotic expansion in powers of the Mach number to get insight into the limit behavior.
The assumptions made guarantee that the solution of the limit equations has constant density and constant tem-
perature. By a formal extension of the asymptotic analysis Klein showed in [11] that temperature and density gra-
dients and heat conduction may also be taken into account. We will shortly describe the main facts as we need
them in the following. Here, we consider the distinguished limit, when M tends to zero as the sound velocity
becomes infinite with respect to the fluid velocity, while the other characteristic numbers are not affected.

The factor 1/M2 in the momentum equation (5) in front of the pressure gradient shows that the limit M! 0
is a singular one. An elliptic behavior appears that is related to the fast running pressure waves in low Mach
number flows. The term 1

M2rp has to remain bounded within this limit. This is achieved when the pressure
splits into a thermodynamic part constant in space and a hydrodynamic part. In the following we formally
introduce into the compressible flow equations such a splitting of the pressure p ¼ pðx; tÞ according to
pðx; tÞ ¼ p0ðtÞ þM2p2ðx; tÞ ð12Þ

with
p0ðtÞ :¼ 1

jXj

Z
X

pðx; tÞdV : ð13Þ
This pressure decomposition is inserted into the basic Eqs. (4)–(6) to give
o.
ot
þr � ð.uÞ ¼ 0; ð14Þ

oð.uÞ
ot
þr � ð.uÞ � u½ � þ rp2 ¼

1

Re
r �Te �

.

Fr2
ez; ð15Þ
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ot
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� �
:

ð16Þ
For M > 0 and a given pressure p0(t) this system is equivalent to the compressible Navier–Stokes equations, if
p in (12) satisfies the equation of state.

Let us assume for the moment that in the case M! 0 the pressure term p0, the density, as well as the tem-
perature are constant. In this case, the momentum equation (15) coincides with the counterpart in the incom-
pressible equations, in which the role of the hydrodynamic pressure is taken over by p2. The energy equation
(16) simplifies to r � u ¼ 0 and the density equation (14) is automatically satisfied. Hence, under these assump-
tions, which are the usual assumptions for incompressible flow, the system (14)–(16) formally equals to the
incompressible Navier–Stokes equations. The pressure term p0 is the background pressure being constant
in space and time and satisfying the equation of state. The pressure p2 is the hydrodynamic pressure which
has nothing to do with the equation of state and is some sort of Lagrangian multiplier. According to (9)
the total energy is constant and identical to the internal energy. Hence, introducing the pressure decomposi-
tion and assuming that all terms are bounded, the compressible equations formally converge to the incom-
pressible equations, when the Mach number tends to zero.
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Within the construction of numerical methods for solving the flow equations at low Mach numbers a pres-
sure decomposition was introduced by Wesseling and his co-workers in [2] and in the multiple pressure vari-
ables approach of Klein and Munz [12] and Munz et al. in [13] in primitive variables. The extension to the
conservative formulation of the flow equations as used in (14)–(16) was proposed in [18,19]. By that, the
shock-capturing property can be established and a unified method for all Mach numbers can be constructed.
For a detailed discussion and an overview of the other approaches to capture fluid flow at small Mach num-
bers see [20].

We next discuss the zero Mach number limit in the more general case. For M! 0 the energy equation for-
mally reduces to
dp0

dt
¼ �cp0r � uþ

c
Pr � Re

r � ðkrT Þ: ð17Þ
This is an evolution equation for the leading order pressure term p0. We integrate the equation over the whole
computational domain X and use the definition of p0 according to (13) to obtain
dp0ðtÞ
dt
¼ 1

jXj �cp0

I
oX
ðu � nÞdAþ c

Pr � Re

I
oX
ðkrT � nÞdA

� �

¼ cp0

jXj �
I

oX
ðu � nÞdAþ 1

Pr � Re

I
oX

kr 1

.

� �
� n

� �
dA

� �
;

ð18Þ
where n denotes the outwards directed unit normal vector at the boundary oX. Here, the volume integrals of
the divergence terms were reformulated as surface integrals of the fluxes into the normal direction by applying
the Gauss theorem. The equation (18) describes the global pressure change in time due to compression and
heat transfer from the boundary. The global pressure p0 is the thermodynamic variable and closely related
to the internal energy according to Eq. (9) for M! 0, so that the equation above corresponds to the first
law of thermodynamics.

Eqs. (17) and (18) can be combined and yield the divergence condition
r � u ¼ 1

p0Pr � Re
r � ðkrT Þ þ 1

jXj

I
oX
ðu � nÞdA� 1

p0Pr � Re

I
oX
½krT � n�dA

� �
: ð19Þ
It is obvious, that the divergence-free condition of velocity for incompressible flow is retained under the
absence of the outer compression and heat transfer. Therefore, this equation may be interpreted as a gen-
eralization of the divergence condition for more general zero Mach number flows. Eqs. (14), (15) and (19)
describe zero Mach number flow with variable density, variable temperature, with heat conduction and un-
der the influence of compression or expansion at the boundaries. The pressure p2 enables to satisfy the
divergence condition (19) as a Lagrangian multiplier. This system of equations may be used as a mathemat-
ical model within a flow regime in which uref is much smaller than cref with variable density, variable tem-
perature and diffusion. The equations in this form have already been considered by Chenoweth and Paolucci
in [3] to describe natural convection with large temperature differences and were called the subsonic
approximation.

3. Expansion about zero Mach number flow

In this section we consider compressible corrections of this zero Mach number flow solution using a per-
turbation ansatz as proposed in [8] about incompressible flow. The solution of the zero Mach number equa-
tions is named in the following as q0; u0; p0; p2; T 0 and is given by (14), (15), (18), (19), and the thermodynamic
equation of state p0 ¼ q0T 0.

Motivated by the asymptotic results we introduce a scaled perturbation approach of the form
qðx; tÞ ¼ q0ðx; tÞ þM2q2ðx; tÞ þM2q0ðx; tÞ; ð20Þ
uðx; tÞ ¼ u0ðx; tÞ þMu0ðx; tÞ; ð21Þ
pðx; tÞ ¼ p0ðtÞ þM2p2ðx; tÞ þM2p0ðx; tÞ: ð22Þ
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The pressure is split into a thermodynamic part p0, into the hydrodynamic part p2 and into the acoustic fluc-
tuations p 0. The density is also split into the density q0 for M! 0, into the acoustic fluctuations q 0, and into q2

which introduces a density change due to the hydrodynamic pressure. We note that q0 may depend on x, when
density variations in the initial data or heat conduction are present. The corresponding temperature is ob-
tained from the equation of state p0 ¼ q0T 0.

For consistency we have to satisfy with this perturbation ansatz Eqs. (20) and (21) and the equation of state
(22). If it is given in the form p ¼ pðq; SÞ where S denotes the entropy, then the equation
p0 þM2p2 þM2p0 ¼ pðq0 þM2q2 þM2q0; S0 þM2S2Þ ð23Þ

has to be satisfied. If the truncated Taylor expansion
pðq; SÞ ¼ pðq0; S0Þ þ
op
oq
ðq0; S0Þðq� q0Þ þ

op
oS
ðq0; S0ÞðS � S0Þ ð24Þ
is substituted, then this relation simplifies to
p2 þ p0 ¼ op
oq
ðq0; S0Þðq2 þ q0Þ þ op

oS
ðq0; S0ÞS2: ð25Þ
The assumption that the acoustic perturbations propagate isentropically leads to the relation p0 ¼ c2
0q
0 and the

corresponding terms in (25) cancel out. The result is an equation for the balance of the hydrodynamic pressure
with density changes and entropy changes. We neglect in (25) the second term and define
q2 :¼ p2

c2
0

with c2
0 ¼ c

p0

q0

: ð26Þ
to balance the hydrodynamic part.
In the EIF approach Hardin and Pope [8] estimated the second term by a time average of the pressure.

The arguments here are that the time-averaged pressure may be assumed to be a result of dissipative
mechanisms, since the effects of viscosity and heat conduction are normally slow on an acoustic time scale.
Their expansion was based on the incompressible solution supplemented with a temperature transport
equation including heat conduction. We replaced here this incompressible solution by a M! 0 solution
where density, temperature, and the thermodynamic background pressure satisfy the equation of state.
The leading terms of the diffusive effects and entropy changes should be captured in these leading order
variables density q0, temperature T0, and thermodynamic pressure term p0 and are removed from the per-
turbation quantities. Hence, we neglect the entropy changes at this place. Another difference to the EIF
approach by Hardin and Pope [8] is that we use the scaling in powers of the Mach number M as moti-
vated by the low Mach number asymptotic analysis. Later on we use the Mach number scaling to con-
sider the basic terms and neglect all terms which have a factor with a greater power in the Mach number.
This automatically leads to a linearization and identifies the most important terms in the sources for suf-
ficiently small Mach numbers.

We note that the introduction of the hydrodynamic density variation is not inevitable at this place but
favorable. These density changes are connected with pure hydrodynamic motion. In the incompressible limit,
these density changes do not appear since the equation of state is satisfied by the background pressure, the
background density and the background internal energy, which are all constant in space and time. For low
but non-zero Mach number flows all pressure terms have to be included into the equation of state and lead
to hydrodynamic density corrections. These corrections are associated with the flow motion and are convected
with fluid velocity. If these corrections are introduced explicitly in the expansion, then they are shifted from
the wave operator to the right-hand side. We discuss this aspect once again in the discussion of the perturba-
tion equations.

The relations (20)–(22) are inserted into the compressible Navier–Stokes equations (4)–(6). On the left-
hand side we write all the derivatives in space and time of the primed variables to get an evolution equation
for the perturbations. The right-hand side contains all the other terms and are interpreted as the sources.
Higher order terms with respect to the powers of the Mach number are neglected. Doing so we obtain
the system
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oq0

ot
þ u0 � rq0 þ 1

M
r � ðq0u0Þ ¼ �Dq2

Dt
� ðq2 þ q0Þr � u0; ð27Þ

ou0

ot
þ ðu0 � rÞu0 þ ðu0 � rÞu0 þ

1

Mq0

rp0 ¼ 1

Req0

r �Teðu0Þ; ð28Þ

op0

ot
þ u0 � rp0 þ 1

M
cp0r � u0 ¼ �

Dp2

Dt
� ðp2 þ p0Þr � u0:þ

c
PrRe

r � krT 2: ð29Þ
Here, we changed from the conservative formulation to the simpler evolution equations for density, velocity
and pressure, respectively. As long as smooth solutions of the acoustic equations are considered the simpler
formulation in primitive variables should be preferred. D=Dt is the abbreviation of o=ot þ u0 � r and T2 is de-
fined such that the equation of state is satisfied which leads to the relation q0T 2 ¼ p2 þ p0 � ðq2 þ q0ÞT 0. The
propagation rate of the acoustic waves in this system becomes infinite while their amplitude tends to zero when
the Mach number tends to zero. The mathematical justification of the linearized acoustics was given by Klain-
erman and Majda [10] who showed that the solutions of these equations are uniformly bounded with respect
to M in the isentropic case. The left-hand side of this system is usually called the linearized Euler equations
(LEE).

Let us now consider the case, when all diffusion effects, compression and heat flux from the boundary are
neglected and the fluid motion is isentropic. Then the linearized perturbation equations can be simplified to
oq0

ot
þ u0 � rq0 þ 1

M
q0r � u0 ¼ �

Dq2

Dt
; ð30Þ

ou0

ot
þ ðu0 � rÞu0 þ

1

Mq0

rp0 ¼ �ðu0 � rÞu0; ð31Þ

op0

ot
þ u0 � rp0 þ 1

M
cp0r � u0 ¼ �

Dp2

Dt
: ð32Þ
The main acoustic source is the term Dp2=Dt in the pressure equation and Dq2=Dt in the density equations.
A difficulty in the perturbation approach based on the linearized Euler equations is that they do not only

describe acoustic wave motion, but also vorticity and entropy modes. Especially in flows where hydrodynamic
instabilities are present as, e.g., in shear flow, fluid instabilities may also occur and increase according to the
linear theory with an exponential rate and may falsify the acoustic motion. Seo and Moon [15] carefully ana-
lyzed the LEE and reformulated in the velocity equations (31) ðu0 � rÞu0 þ ðu0 � ru0Þ into rðu0u0Þþ two terms
involving the vorticity of the acoustic propagation and the vortical hydrodynamic motion. Because the addi-
tional two terms are associated with the generation and transport of perturbed vorticity only, they dropped
them to get the proper acoustical motion in the LPCE (linearized perturbed compressible equations). In other
respects the system (30)–(32) coincides well with LPCE in the isenstropic case. Seo and Moon did not explicitly
introduce the scaling with the Mach number and the explicit hydrodynamic correction of the density. Instead
they used the principal perturbation variable q2 þ q0 and got therefore some discrepancy in the pressure equa-
tion, too. Additionally, we do not take into account the term ðu0 � rÞp2 which is in our consideration O(M3).
Another approach to get rid of the hydrodynamic instabilities is a reformulation into the APE system due to
Ewert and Schröder [7]. They reformulated the wave propagation model such that vorticity and entropy
modes do not appear anymore and obtained a system of equations for the acoustic modes only. They also
succeeded to extend these considerations to compressible main flow. We do not consider this aspect in the
following.

The impact to introduce hydrodynamic density corrections can directly be seen in this isentropic case. We
multiply the equation for the acoustic density fluctuations (30) by c2

0 and subtract it from the pressure equation
to obtain
o

ot
ðp0 � c2

0q
0Þ þ u0 � rðp0 � c2

0q
0Þ ¼ � D

Dt
ðp2 � c2

0q2Þ: ð33Þ
Here, the source terms cancel out and the relation p0 � c2
0q
0 ¼ constant in time along the particle paths is valid.

Hence, the acoustic wave propagation is fully isentropic as expected. We can either solve the density equation
(30) or the pressure equation (32) together with the velocity equation (31) and the isentropic relation. If the
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density corrections are not introduced, then we need the full linearized Euler equations, because the hydrody-
namic density corrections are part of the solution. If furthermore the convection of the acoustic perturbations
can be neglected, then the whole set of equations (30)–(32) simply reduces to the linear acoustic wave equation
o2p0

ot2
� c2

0

M2
Dp0 ¼ � o2p2

ot2
ð34Þ
or equivalently the density equation
o
2q0

ot2
� c2

0

M2
Dq0 ¼ � o

2q2

ot2
ð35Þ
with D ¼ r � r. Here, the advantage to decompose the M2-terms of the density into q2 from (26) and the
acoustic fluctuations q 0 becomes obvious again. In the density equation the compressibility effects due to
the hydrodynamic motion are moved from the wave propagation on the left-hand side to the right-hand side
and play the role of the source terms. Using q2 þ q0 as a primary variable one has to be more careful. Neglect-
ing the fluid convection would not result in a simple wave equation for density, because the assumption of an
isentropic relation between these density and pressure perturbations is not valid. Otherwise one would have a
wave equation for the density perturbations without source terms. The wave equation for the density pertur-
bations, which directly corresponds to the wave equation for the pressure, can be obtained only if the hydro-
dynamic density corrections are subtracted.

The inclusion of thermal conduction, variable density and compression from the boundary in (27)–(29)
makes the situation more complicated. The wave operator for the wave propagations is still the same, but
additional source terms on the right-hand side appear compared to the expansion about the incompressible
solution This is due to the fact that here the divergence of the velocity r � u0 may not vanish. Additional
source terms occur in the density and pressure equations determined by the divergence of the velocity u0

and heat conduction.

4. A non-trivial one-dimensional example

In the following we consider an one-dimensional example with compression from the boundary at a global
Mach number M = 0.0025. An acoustic wave is generated by the time-dependent boundary values for the
velocity
uða; tÞ ¼ M sinðtÞ; uðb; tÞ ¼ �M sinðtÞ for t 2 Rþ0 : ð36Þ

The equations for Mach number M = 0 generated by these boundary values possess a non-trivial solution,
because the incompressibility constraint uða; tÞ � uðb; tÞ ¼ 0 is not satisfied. The solution can be calculated
analytically. We have the following properties of the flow field: the thermodynamic pressure p0 is constant
in space, but a function of time, the background density q0 is constant in space, but a function of time, the
velocity u0 is a function in time and a linear function in space, and the hydrodynamic pressure p2 is a function
in time and a quadratic function in space. According to the excitation from the boundary values (36) the ther-
modynamic pressure is given by (17) that simplifies in our case to
dp0ðtÞ
dt
¼ � cp0ðtÞ

jI j u0ðb; tÞ � u0ða; tÞð Þ; ð37Þ
where I denotes the spatial interval I ¼ ½a; b� ¼ ½0; p� and jI j ¼ p its length. Hence, the x-derivative of the
velocity is given by
ou0ðx; tÞ
ox

¼ � 1

cp0ðtÞ
dp0ðtÞ

dt
: ð38Þ
Because the velocity is known, the hydrodynamic pressure is obtained from the velocity equation
ou0ðx; tÞ
ot

þ u0

ou0ðx; tÞ
ox

þ 1

q0ðtÞ
op2ðx; tÞ

ox
¼ 0 ð39Þ
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and the density from the continuity equation
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(27)–(2
dq0ðtÞ
dt
¼ �q0ðtÞ

ou0

ox
ðtÞ: ð40Þ
The non-trivial zero Mach number solution for u0, p0, q0 and p2 is then obtained analytically after integration
of (37)–(40) as follows:
u0ðx; tÞ ¼ M sinðtÞ 1� 2x
p

� �
; ð41Þ

p0ðtÞ ¼
1

c
� 2

MðcosðtÞ � 1Þ
p

; ð42Þ

q0ðtÞ ¼ AðM ; tÞ � cosh 2
M
p

� �
� sinh 2

M
p

� �� ��1

; ð43Þ

p2ðx; tÞ ¼ AðM ; tÞ � BðMÞ � ðcosðtÞpþMðcosð2tÞ � 1ÞÞ xðx� pÞ
p2

; ð44Þ
with
AðM ; tÞ ¼ e�
2
pM cosðtÞ and BðMÞ ¼ sinh 2

M
p

� �
þ cosh 2

M
p

� �
: ð45Þ
The analytical expressions given by (41)–(44) are then used to calculate the source terms on the right-hand side
of the acoustic perturbation equations (27)–(29). Diffusion effects are neglected. As a reference solution, we
compute the entire problem solving the full non-linear compressible Euler equations with the corresponding
boundary conditions (36) for the velocity and with the initial condition qðx; 0Þ ¼ 1, uðx; 0Þ ¼ 0 and
pðx; 0Þ ¼ 1=c with c = 1.4 up to time t = 2.0 using a third order ADER discontinuous Galerkin scheme
[5,6] on 1000 elements.

The linearized Euler equations (27)–(29) are then solved numerically up to t = 2.0 with the appropriate
boundary and initial conditions using a third order ADER finite volume (ADER-FV) scheme [4] with 250 cells
in the space interval. The total flow quantities q ¼ q0 þM2ðq2 þ q0Þ, u ¼ u0 þMu0 and p ¼ p0 þM2ðp2 þ p0Þ
are depicted in Fig. 1 for both the non-linear computation and the computation with the linearized Euler
equations. We note an excellent agreement between the non-linear and the linearized simulation.
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Since in this test problem the values of the velocity are very small, the influence of the flow field onto the
acoustic wave propagation may be neglected. If we set u0 ¼ 0, q0 ¼ 1 and p0 ¼ 1=c in the linearized Euler
equations (27)–(29), then the mathematical model of the linearized Euler equations reduces to the simple inho-
mogeneous wave equation (34) for the acoustic pressure p 0. The solution obtained at t = 2.0 for the total flow
quantities q, u and p with this approach is depicted in Fig. 2, where again an excellent agreement of the non-
linear and the linearized computation can be observed, in spite of neglecting all convection effects. The numer-
ical method in this case was again a third order ADER-FV scheme on 250 cells.

In the following we perform an additional calculation for which we dropped the source term � Dq2

Dt in the
density equation (27). Hence, the density correction for the hydrodynamic pressure p2 is also shifted to the
left-hand side. We call the resulting density corrections q00 ¼ q2 þ q0 and in this case the density equation
(27) for q 0 is replaced by the following equation for q00:
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with th
oq00

ot
þ u0 � rq00 þ 1

M
q0r � u0 ¼ �q00r � u0: ð46Þ
In Fig. 3 the results obtained for the full flow quantities q ¼ q0 þM2q00, u and p are again compared with the
reference solution obtained from the fully compressible non-linear Euler equations at t = 2.0. We see that also
with this formulation the linearized approach is able to capture very well the behavior of the reference solu-
tion. We note that the density corrections q00 are in this case not longer purely acoustic corrections and do not
satisfy the isentropic relation with the acoustic pressure-corrections p 0 as outlined previously. Hence, it seems
to be favorable for the simulation of acoustic wave propagation to shift the hydrodynamic density correction
to the right-hand side.

Finally we show a comparison of all the above-mentioned linearized approaches with the reference solution
in Fig. 4, where a zoom into the distribution of total density q is plotted at t = 2.0. We clearly observe that
both versions of the linearized Euler equations yield results that are closer to the reference solution than the
pure wave equation. A physical explanation is the following: since the velocity gradient has a maximum in the
middle of the computational domain I, we expect the convection effects to be larger in this region compared to
regions closer to the boundaries of I. At t = 2.0 the boundaries a and b are still moving inwards, see the profile
of u in Figs. 1–3. In this case the convection will lead to an increase of density in the middle of the domain I. It
can be clearly seen in Fig. 4 that in the considered region the density is underestimated by the pure wave equa-
tion due to the fact that convection has been neglected. Although the effect is small at this low Mach number,
it still remains visible.
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5. Conclusions

Motivated by asymptotic results for fluid flow at small Mach numbers we extended the expansion about
incompressible flows to the more general situation, when heat conduction or compression from the boundary
is active and cannot be neglected. The incompressible solution is replaced by the solution of the limit equations
of the compressible Navier–Stokes equations, when the Mach number tends to zero. The usually applied addi-
tional assumptions of constant temperature and density are abolished. The state of expansion is given by a
subsonic approximation of the compressible Navier–Stokes equations. We introduced multiple pressure vari-
ables, a thermodynamic background pressure and a hydrodynamic pressure term, to obtain the proper limit
equations. The sum of the M! 0 solution and perturbed quantities are inserted into the compressible equa-
tions to obtain evolution equations for the perturbations. A scaling with powers of the global Mach number
gives a linearization of these equations by picking out the leading order terms and also identifies the main
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terms of the sources. We showed numerical results for a problem with compression from the boundary for
which the M! 0 equations have an analytic solution. The solution for M! 0 plus the perturbations coincide
very well with the numerical solution of the full Euler equations.

The considered perturbation approach is applicable to fluid flow with thermal processes. It is assumed in
our considerations that these effects do not dominate the dynamics of the flow. We considered thermo-acoustic
corrections of the M! 0 solution. Otherwise the basic flow has to be described by the full compressible equa-
tions. Based on a multiple scale expansion with two space scales �x ¼ OðxÞ; n ¼ OðMxÞ and one time scale Klein
[11] discovered in this case another consistent asymptotic expansion. Here, the pressure splits up into three
main parts
pðx; tÞ ¼ p0ðtÞ þMp1ðn; tÞ þM2p2ð�x; n; tÞ þ � � � ; ð47Þ

where the pressure term p1 is an acoustic pressure that only depends on the large-scale acoustic variable n. This
corresponds to a regime where thermo-acoustic waves strongly influence the fluid flow, the order of the acous-
tic pressure in the expansion is even larger than that of the hydrodynamic pressure. This is no situation to
apply a hybrid approach and to separate the flow from acoustics. The perturbation equations proposed in this
paper do not cover this situation. Here, we assume that the fluid flow is always well described by the subsonic
approximation. Within the construction of a numerical method for low Mach number flow Roller and Munz
used the pressure variable p1 to get an initial guess for the pressure iteration within a pressure-correction meth-
od in [14].
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